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Abstract

Factor analysis was used to assess relationships in the minimum-inhibitory concentration among
17 antimicrobials tested on isolates of Escherichia coli isolated from 360 faecal samples obtained
from feedlot cattle. Six factors were extracted using maximum-likelihood factor analysis. The factors
were interpretable antimicrobial groupings based on class of antimicrobial and previously described
associations. New-generation cephalosporins, older-generation beta-lactams, fluoroquinolones and
aminoglycosides grouped separately as classes of antimicrobials on four of the six factors. One of the
remaining factors was a grouping of antimicrobials that had been identified as being related in
previous feedlot studies. The last factor was a grouping of three of the five antimicrobials that
comprise the antimicrobials found in penta-resistant strains of Salmonella Typhimurium. The factor
analysis described patterns in the MIC data that would not have been apparent if only antimicrobial-
resistance data categorized as susceptible-resistance had been analysed.
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1. Introduction

Antimicrobial resistance, especially in pathogenic bacteria, is a global problem that has
emerged in the past two decades (Blondeau and Vaughan, 2000; Aarestrup, 2000).
Resistance in bacterial isolates from agricultural animals has raised concern both among
public-health professionals and veterinarians. The public-health concern is that antimi-
crobial-resistance genes can be incorporated into the genome of potential human pathogens
(e.g. Salmonella, Campylobacter, Escherichia coli) and transmitted through food-borne
routes to humans. In addition, there is concern that resistance genes in non-pathogenic
bacteria could be transmitted to humans where the genes would be available to non-
resistant pathogenic bacteria in the human gastrointestinal tract. Veterinarians and other
animal-health authorities are concerned about their ability to control bacterial infections in
domestic animals and about the zoonotic potential. These concerns have motivated
considerable effort in both human medical and veterinary areas to identify emerging
resistance, estimate prevalence, and monitor trends (Sahm et al., 2001; Jones, 2000;
Cavallo et al., 2000; Smith et al., 1999).

The importance of resistance-surveillance mandates the development of effective
and efficient monitoring systems (Sahm et al., 2001). Within the framework of
surveillance, there is a need to refine statistical methods for identifying patterns of
resistance and to be able to communicate the results to the scientific community (Jones,
2000). Surveillance systems can generate large amounts of data that must be distilled
into meaningful summaries. An important attribute of resistance-surveillance data
is the occurrence of multiple outcomes per individual bacterial isolate. Multiple
outcomes typically arise when a panel of antimicrobials is tested on each isolate.
Methods that have been used to address the multiple outcomes include antibiograms,
indices (Krumperman, 1983; Kaspar et al., 1990), and discriminant analysis (Wiggins,
1996).

Antibiograms are essentially a tabulation of the occurrence of antimicrobial resistance.
Resistance to a specific antimicrobial can occur singly or jointly with other antimicrobials.
Interpretation of antibiograms depends on visual examination of the tabulation to identify
patterns. Indices typically are a summary value of the richness, the number of antimi-
crobials to which an isolate is resistant, or diversity of the pattern being examined. The
summary value yields little information concerning the patterns of resistance in the data.
Discriminant analysis is the only method that addresses the multiple outcomes with
multivariate statistical methods. The objective of the discriminant analysis was to construct
a linear function of resistant/non-resistant responses to multiple antimicrobials to separate
isolates into categories for identification of sources such as in the case of non-point source
pollution (Wiggins, 1996).

Our objective was to describe the use of factor analysis in identification of patterns in
antimicrobial minimum-inhibitory concentrations (MICs). Specifically, factor analysis
was applied to identify patterns within a panel of 17 antimicrobials used to test bacterial
isolates of E. coli from faeces of feedlot cattle. The usefulness of the method was
assessed by the ability to identify patterns of both susceptibility and resistance that
had interpretations based on the biology of resistance development and antimicrobial
action.
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2. Materials and methods
2.1. Study population

Faecal samples were collected from cattle housed in six pens at a commercial feedlot in
Colorado on 2 May 2000. Each pen had approximately 10,000 square feet of area and
contained between 54 and 56 beef steers. Cattle in three of the pens had been on feed for
75 days while the other three pens had been on feed for 81 days. All cattle were receiving
tylosin in their rations at a rate of 10 g/t of feed (approximately 60-90 mg per head per
day). One animal had received an injection of an antimicrobial (micotil) in the week prior
to sampling. No other cattle had antimicrobial injections in the month prior to sampling.
Within each pen, 30 fresh faecal samples (approximately 50 g each) were collected from
individually identifiable faecal pats on the ground. Disposable plastic gloves were used to
pick up faecal material and were changed between samples. Efforts were made to collect
the faecal samples from sites throughout the pen to minimize the opportunity for collecting
multiple faecal samples from the same animal.

Additionally, while the pen floor samples were being collected, 30 faecal samples were
obtained per rectum from randomly selected individual animals from each of the six pens
while the cattle were being restrained in a chute. The randomization was performed by
assigning random numbers to the count of cattle in the pen (numbers ranging from 1 to 54
or 56 depending on pen size). The random numbers were sorted and the top 30 were chosen
for sampling. The count value was translated to the order going through the chute. All
samples were cooled and transported to the laboratory for further processing within 4 h of
collection.

In the laboratory, approximately 1 g of faecal material from each sample was placed in a
50 ml conical tube. Ten millilitre of 0.5% normal saline was added to each tube. The tubes
were shaken using a vortex to mix the saline and the faecal material. The tubes were then
kept overnight in a refrigerator at 3 °C. On the next day, the samples were shipped for
overnight delivery to a second lab where the culturing and antimicrobial susceptibility
testing was conducted.

2.2. Culture and antimicrobial-resistance testing

Dilute faecal material was streaked on MacConkey-4-methylumbelliferyl-f-p-glucur-
onide agar plates agar plates to isolate colonies of E. coli. E. coli was chosen as the species
for antimicrobial-resistance testing because of its ubiquitous nature. Plates were incubated
at 37 °C for 18-24 h. Individual E. coli colonies were identified under ultraviolet light as
lactose-positive (bright pink) and glucouronidase-positive (colony periphery had a bluish
appearance). Five colonies were selected from each agar plate and transferred to individual
nutrient agar slants and incubated for another 18-24 h. The slants then were checked for
growth and stored at 2-8 °C until the individual isolates were tested for susceptibility. In
preparation for antimicrobial susceptibility testing, MacConkey agar plates were inocu-
lated with bacteria from the slants. Colonies were selected from these plates and placed into
separate tubes with 5 ml of sterile water and turbidity was adjusted to a 0.5 McFarland
standard. After mixing, 10 pl of the bacterial suspension was used to inoculate 10 ml of
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Table 1
Descriptive statistics for MIC data (n = 1737 E. coli isolates from 360 feedlot cattle faecal samples tested for
drug, resistance against E. coli) (MIC units are pg/ml)

Antimicrobial Sth Median ~ 95th Maximum  Non-transformed Transformed
percentile percentile skewness skewness
Amikacin 4.0 4.0 4.0 16.0 23.6 18.4
Amoxicillin—clavulanic acid 1.0 4.0 4.0 32.0 7.8 —0.1
Ampicillin 2.0 2.0 4.0 32.0 6.7 2.8
Apramycin 2.0 4.0 4.0 16.0 2.3 0.0
Cefoxitin 4.0 4.0 4.0 32.0 11.9 7.7
Ceftiofur 0.5 0.5 0.5 4.0 14.8 133
Ceftriaxone 0.25 0.25 0.25 8.0 18.2 14.4
Cephalothin 2.0 4.0 16.0 32.0 3.1 0.0
Chloramphenicol 4.0 8.0 8.0 32.0 4.5 1.0
Ciprofloxacin 0.015 0.015 0.015 0.025 14.4 8.3
Gentamicin 0.25 0.50 0.50 4.0 5.7 0.5
Kanamycin 16.0 16.0 16.0 64.0 9.7 9.5
Nalidixic acid 4.0 4.0 4.0 128.0 12.8 9.5
Streptomycin 32.0 32.0 64.0 256.0 6.6 39
Sulphamethoxazole 128.0 128.0 512.0 512.0 1.3 1.3
Tetracycline 4.0 4.0 32.0 32.0 1.0 0.9
Trimethoprim 0.12 0.12 0.25 4.0 16.2 32

cation-adjusted Mueller-Hinton broth, which then was used to inoculate antimicrobial-
sensitivity plates. The plates were incubated at 35 °C for 18-24 h and then read using a
semi-automated system (Sensititre™). Based on growth in individual wells, the MICs
against a panel of 17 antimicrobial drugs were determined. The 17 antimicrobials (Table 1)
were selected to parallel the panel used by the National Antimicrobial Resistance
Monitoring System for Enteric Bacteria (NARMS-EB) in the US. The ATTC E. coli
25922 was used as a quality control organism. The MIC for each antimicrobial was used to
classify the isolate as susceptible, intermediate, or resistant according to standards used to
classify human isolates as determined by the National Committee on Clinical Laboratory
Standards. (Breakpoints for veterinary MICs values are not currently available.)

2.3. Statistical analysis

All analyses were performed using Version 8.1 of SAS." All observations with missing
MIC results for any of the 17 antimicrobials were deleted for all analyses. Descriptive
statistics were computed to examine the univariate MIC distributions for the 17 anti-
microbials. Some of the techniques we used assume a multivariate normal distribution. To
accommodate this assumption, data for individual variables should be approximately
normally distributed. Skewness of the MIC distributions indicated the need for a transfor-
mation to more-closely approximate normal distributions. The data were log transformed to

U'SAS Version 8.1: SAS Software, SAS Institute Inc., SAS Campus Drive, Cary, NC 27513.
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correct for the lack of normality. Shapiro—Wilk tests for normality were used to assess the
normality assumption of the transformed data (Conover, 1980).

Three factor-analytic methods were implemented to allow for comparison of fit criteria:
principal-component (PC), unweighted least-squares (ULS), and maximum-likelihood
(ML). A varimax rotation was used in each method. The fit criteria examined were root
mean square (RMS) of the off-diagonal residual correlation and RMS of the off-diagonal
partial correlations. The number of factors to keep in the factor analysis was determined by
evaluating three criteria based on results from the PC and ML methods: a scree plot, a
minimum eigenvalue of 1.00, and a large-sample test for the number of common factors
(Johnson and Wichern, 1992). The scree plot, a plot of the factor number and its associated
eigenvalue, was assessed by looking for a levelling of the slope of the curve. The large-sample
test was used by sequentially fitting models with increasing numbers of factors kept. A y*-test
tested significance of adding factors using output from the ML factor analysis. Johnson and
Wichern (1992) warn that large-sample sizes and a small number of factors being examined
compared to the number of variables entering the factor analysis can lead to retention of more
common factors than are necessary to explore the data. Consequently, they suggest exercising
judgement in selecting the number of factors since additional factors can be significant
without providing much additional insight into data. The scree plot and the minimum
eigenvalue cutoff of 1.00 came from the PC method while the y-tests were obtained from the
ML method. The final model determined from transformed data was compared to a model
developed from non-transformed data to assess the effect of the transformation on the factors.
A P-value <0.05 was used in determining statistical significance (Fig. 1).

Multiple isolates were obtained from a single faecal sample and, potentially, faecal
samples could have originated from the same individual making the assumption of
independence needed for inferential analysis problematic. We ran the factor model with
randomly selected single isolates from each sample to assess the impact that five isolates
from a single sample might have had on the model. Johnson and Wichern (1992) discuss an
example where the lack of independence among repeated observations was evaluated in
this manner.

4.5

Eigenvalue

1 2 3 4 5 6 7 8
Factor Number
Fig. 1. Scree plot depicting the eigenvalues for eight factors. Factors with eigenvalues of at least one were kept

in the final factor model. (Factor analysis model of antimicrobial resistance of 1737 E. coli isolates from 360
feedlot cattle faecal samples.)
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An antibiogram table was developed for comparison with the factor-analysis results.
Intermediate results were combined with susceptible results to create a dichotomous
susceptible/resistant outcome for constructing the antibiogram.

3. Results

MIC was measured on a total of 1737 isolates (one isolate lost to testing and 42 isolates
with missing MIC data). The descriptive analysis of the untransformed data indicated that
the MIC values were not normally distributed (Table 1). MIC distributions for almost all of
the antimicrobials were highly skewed and all 17 of the Shapiro—Wilks tests for normality
were highly significant (P < 0.001). The log transformation improved the skewness
problem for all 17 antimicrobials although the Shapiro—Wilks tests for normality still
indicated significant deviations from normality (P < 0.001) for the transformed MIC
values for all antimicrobials. The deviations from normality are likely due to the discrete
characteristics of the MIC data and the relatively large-sample size which allows for
detection of small deviations from normality.

The antibiogram revealed 36 different combinations of resistance to antimicrobials
(Table 2). Most of the isolates (1148/1737; 66.1%) were susceptible to all antimicrobials;
resistance to a single antimicrobial was indicated in 189 (10.9%) of the isolates. No resistance
was ever observed for six antimicrobials (amikacin, apramycin, ceftiofur, ceftriaxone,
ciprofloxacin, and gentamicin). Most of the antimicrobial-resistance combinations were
relatively rare (<1.0% of isolates). Varying combinations of resistance to streptomycin,
sulphamethoxazole, tetracycline, and trimethoprim—sulphamethoxazole predominated.

Based on the scree plot, five to six factors would be recommended although most of the
variation in the data was represented in three to four factors. Based on the criteria of
keeping eigenvalues >1.0, six factors should be kept. The large-sample y*-tests used to
check for sequential addition of factors indicated that at least seven factors could be kept in
the analysis (Table 3). We chose to keep six factors.

The best fit between the six-factor models was judged by examining RMS of the off-
diagonal residual correlation and RMS of the off-diagonal partial correlations (Table 4).
These two criteria are used to compare the relative ability of the models to fit the observed
correlation matrix (1992). Larger values for both the criteria imply a poorer fit because
more of the original correlation matrix is left unexplained by the factor analysis. The PC
method had the poorest fit based on these two diagnostics. The other two methods had
comparable values for the two diagnostics.

The loadings for the six factors nevertheless were examined for all three models. The
factor loadings were very similar between the ULS and the ML methods and, thus, only the
ML and PC method loadings are presented here (Table 5). The PC loadings differed from
the results for the other two methods primarily by a switching of factor 1 and factor 2. Also,
kanamycin loaded on the sixth factor extracted using the PC method but did not load on any
factor using the other methods. Because of fit criteria, the consistencies between the ULS
and ML factor loading patterns, and the general agreement across all three methods,
the remaining discussion of results will focus on the factor-analysis results based on the
ML method.
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Table 2
Frequency distribution of resistance groupings (n = 1737 outcomes of E. coli isolates from 360 feedlot cattle
faecal samples)®

Antimicrobials Frequency Percent
Amo, Amp, Cef, Cep, Chl, Str, Sul, Tet 6 0.35
Amo, Amp, Cep, Chl, Str, Sul, Tet 1 0.06
Amo, Amp, Cep, Str, Sul, Tet 1 0.06
Amo, Amp, Cep, Tet 1 0.06
Amo, Amp, Cep 3 0.17
Amo, Cep 1 0.06
Amp, Cep, Tet 2 0.12
Amp, Chl, Str, Sul, Tet 10 0.58
Amp, Chl, Str, Sul 2 0.12
Amp, Str, Sul 1 0.06
Amp, Sul, Tet 1 0.06
Amp, Sul 1 0.06
Cef, Sul, Tet 1 0.06
Cef 1 0.06
Chl, Str, Sul, Tet, Tri 2 0.12
Chl, Str, Sul, Tet 5 0.29
Chl, Sul, Tet 1 0.06
Chl, Sul 1 0.06
Chl 2 0.12
Kan, Str, Sul, Tet 8 0.46
Kan, Str, Tet 2 0.12
Kan, Sul, Tet 3 0.17
Kan, Sul 2 0.12
Kan 2 0.12
Nal, Str, Sul, Tet 2 0.12
Nal, Str, Tet 1 0.06
Nal, Sul, Tet 11 0.63
Nal 3 0.17
Str, Sul, Tet 140 8.05
Str, Sul 1 0.06
Str, Tet 15 0.86
Str 4 0.23
Sul, Tet 175 10.07
Sul 26 1.50
Tet 151 8.69

# Amo: amoxicillin—clavulanic acid, Amp: ampicillin, Cef: cefoxitin, Cep: cephalothin, Chl: chloramphe-
nicol, Kan: kanamycin, Nal: naladixic acid, Str: streptomycin, Sul: sulphamethoxazole, Tet: tetracycline, Tri:
trimethoprim—sulphamethoxazole.

Two antimicrobials, ceftiofur and ceftriaxone, loaded very high (loading > 0.90) on the
first factor while a third antimicrobial, cefoxitin, loaded moderately high (loading > 0.50).
All three of these antimicrobials are cephalosporins (a type of beta-lactam), both second
and third generation. Thus, factor one can be described as ‘“‘newer-generation cephalos-
porins.” Sulphamethoxazole and tetracycline loaded heavily on factor two while trimetho-
prim—sulphamethoxazole and, to a lesser extent, streptomycin loaded moderately high.
These antimicrobials do not come from a single class of antimicrobials—but resistances to
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Table 3

Large-sample y*-tests for the number of factors to keep in ML factor-analysis model

Factor to be added 7 d.f. P-value
2 3348.4 16 <0.0001
3 1647.0 15 <0.0001
4 1212.8 14 <0.0001
5 717.5 13 <0.0001
6 396.1 12 <0.0001
7 71.5 11 <0.0001

these two drugs occur together frequently in bacterial isolates. Factor two also can be
considered to be a group of antimicrobials with higher prevalences of resistance than other
antimicrobials on the panel. Factor three was dominated by amoxicillin—clavulanic acid
and cephalothin with a lesser influence by ampicillin. All three of these antimicrobials are
older-generation beta-lactams. Only ciprofloxacin and nalidixic acid loaded high on factor
four. These are the only fluoroquinolones in the panel. Consequently, factor four is a
grouping of fluoroquinolones. Gentamicin loaded high while apramycin loaded moder-
ately high on factor 5. Both antimicrobials are in the aminoglycoside class of antimicro-
bials. Other aminoglycosides (specifically amikacin, kanamycin, and streptomycin) did not
load high on factor 5 (amikacin and kanamycin actually had negative loadings on factor 5).
Ampicillin, chloramphenicol, and streptomycin represent the highest loadings on factor 6.
Chloramphenicol had its highest loading on factor 6, while the loadings in factor 6 for
ampicillin and streptomycin were similar to those in factor 3 and factor 2, respectively.

Neither amikacin nor kanamycin (both aminoglycosides) loaded strongly on any of the
factors created using either the ML or the ULS methods. Amikacin dominated the sixth
factor created by the PC method.

The ML method was run to extract six factors from the untransformed data. The
resulting loading patterns were the same as obtained from the transformed data although
the order of the factors was mixed and streptomycin and trimethoprim—sulphamethoxazole
did not load as highly with sulphamethoxazole and tetracycline (data not shown).

ML models using a randomly selected single isolate consistently mirrored the results
that we obtained when all five isolates were available to the model (data not shown).
However, because of the reduced number of isolates in the single isolate model,
occasionally the model would not solve because of singularities in the model (all MIC
values the same for at least one antimicrobial).

Table 4
RMS for the off-diagonal residual and partial correlations for the six-factor models of antimicrobial resistance of
E. coli isolates from 360 feedlot cattle faecal samples

Factor-analysis method Residual RMS Partial correlation RMS
ML 0.01 0.03
PCs 0.06 0.21

ULS 0.01 0.03
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Table 5
Loadings” for the six factors from the ML and PC factor analysis of MICs for E. coli isolates from 360 feedlot
cattle faecal samples

Antimicrobial Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

ML loadings

Amikacin —0.010 0.039 0.033 0.007 —0.041 0.011
Amoxicillin—clavulanic acid 0.166 0.088 0.769 0.023 0.120 0.192
Ampicillin 0.196 0.092 0470 0.025 0.064 0.557
Apramycin 0.017 0.070 0.138 0.015 0.648 0.098
Cefoxitin 0.552 0.015 0.252 —0.025 —0.007 0.192
Ceftiofur 0.955 0.056 0.082 0.016 0.031 0.133
Ceftriaxone 0.949 0.049 0.053 0.030 0.028 0.137
Cephalothin 0.125 0.152 0.807 0.036 0.124 0.029
Chloramphenicol 0.148 0.053 0.074 —0.028 0.039 0.486
Ciprofloxacin 0.024 0.034 0.035 0.893 0.042 —0.026
Gentamicin —0.007 0.047 0.115 0.014 0.891 0.049
Kanamycin —0.016 0.125 0.000 —0.006 —0.019 0.009
Nalidixic acid —0.008 0.037 0.024 0.776 —0.026 —0.006
Streptomycin 0.266 0.537 0.021 —-0.012 0.146 0.495
Sulphamethoxazole 0.068 0.891 0.081 0.111 0.066 0.031
Tetracycline 0.055 0.809 0.170 0.110 0.074 0.011
Trimethoprim—sulphamethoxazole ~ 0.084 0.695 0.083 —0.061 0.058 0.097
PC method
Amikacin 0.034 —0.061 0.107 0.002 —0.135 0.135
Amoxicillin—clavulanic acid 0.100 0.156 0.863 0.020 0.114 0.029
Ampicillin 0.087 0.294 0.637 0.007 0.093 0.341
Apramycin 0.084 0.014 0.135 0.011 0.869 0.007
Cefoxitin 0.025 0.715 0.296 —0.036 —0.024 0.006
Ceftiofur 0.099 0.938 0.081 0.022 0.032 0.015
Ceftriaxone 0.093 0.940 0.053 0.034 0.028 0.020
Cephalothin 0.170 0.082 0.857 0.038 0.085 —0.065
Chloramphenicol —0.024 0.244 0.139 —0.055 0.116 0.752
Ciprofloxacin 0.041 0.019 0.029 0918 0.043 0.005
Gentamicin 0.083 —0.023 0.130 0.011 0.873 —0.006
Kanamycin 0.103 —0.120 —0.049 0.028 —0.099 0.548
Nalidixic acid 0.039 —0.002 0.022 0.914 —0.023 —0.019
Streptomycin 0.608 0.346 0.064 —0.036 0.183 0.402
Sulphamethoxazole 0.892 0.021 0.078 0.114 0.034 0.089
Tetracycline 0.852 0.014 0.165 0.116 0.031 0.025
Trimethoprim—sulphamethoxazole  0.825 0.072 0.083 —0.103 0.026 —0.023

# Moderate and high loadings are in italics.

4. Discussion

Patterns in MICs identified by factor analysis essentially fell into two types of relation-
ships: a link amongst antimicrobials within the same class (e.g. cephalosporins, fluor-
oquinolones, or aminoglycosides) and groupings of antimicrobials (not necessarily from
the same class) that were consistent with susceptibility/resistance associations in other
studies of antimicrobial resistance in beef cattle.
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The ability to attach specific interpretations to the factors demonstrates the value of this
type of analysis. Factor one is a grouping of newer-generation cephalosporins. Under
selection pressure for the development of resistance for at least one new-generation
cephalosporin, it is logical that resistance might emerge for all the cephalosporins.
Similarly, in the absence of selection pressure for this class of antimicrobials it is also
logical to find them loading together on the same factor. Thus, factor one represents a
susceptibility pattern in the data that might not be apparent when reviewing the anti-
biogram (which is based solely on resistance).

Factor two differs from factor one in that the former represents a mixture of anti-
microbial classes. Three of the four antimicrobials in this group had higher univariate MIC
values (Table 1) and the highest frequency of resistance (Table 2) among the antimicrobials
tested. However, high MIC values and frequency of resistance does not appear to be the
reason that trimethoprim/sulphamethoxazole was correlated with the other antimicrobials.
Other studies of resistance patterns of enteric bacteria from feedlot cattle (Dargatz et al.,
2002) and beef cows (Dargatz et al., 2000) have demonstrated the co-occurrence of
streptomycin and trimethoprim/sulphamethoxazole resistance as well as sulphamethox-
azole and tetracycline resistance.

The third factor was comprised of antimicrobials from the older group of beta-lactams.
As with factor one, this grouping appears to be a grouping of antimicrobials from the same
class. One difference between the antimicrobials that loaded high in factor 3 and factor 1,
respectively, is that the MIC values tend to be higher in the antimicrobials with higher
loadings on the factor 3. In factor 3, the antimicrobials with high loadings have been in use
for a longer period of time and, perhaps, are more-frequently used in feedlot operations.
Approximately 50% of large feedlots (>8000 head) use cephalosporins (ceftiofur) to treat
respiratory disease (USDA, 2000)—one of the most-common diseases in feedlot cattle.
However, only about 9% of feedlots use it as their primary initial treatment (USDA,
2000)—so this class of antimicrobials is being used only in special circumstances as a
primary treatment. Treatment records from the study feedlot indicated beta-lactams were
not used as a primary initial treatment for respiratory disease.

Factor 4 was dominated by the fluoroquinolones, a new class of antimicrobials of special
concern because resistance has not yet developed widely in the human or animal
populations (Sahm et al., 2001; Smith et al., 1999; Thornsberry et al., 1999). Nalidixic
acid, the older of the two fluoroquinolones, had relatively higher MIC values which were
reflected in the presence of resistance in some isolates but ciprofloxacin resistance was
absent in these 1737 isolates. Consequently, the factor analysis was able to identify a
correlation between the two fluoroquinolones using MIC data that would not have been
apparent using SIR data. Ruiz et al. (Ruiz et al., 2002) demonstrated a relationship between
naladixic acid resistance prevalence and ciprofloxacin MIC values in human E. coli
isolates. In their study, increasing prevalence of nalidixic acid resistance was associated
with increasing ciprofloxacin MIC values in ciprofloxacin-susceptible isolates.

Factor 5 is problematic because only two of the five aminoglycosides, apramycin and
gentamicin, loaded high on the factor (amikacin, kanamycin, and streptomycin did not).
Streptomycin is an older antimicrobial and its common link with other antimicrobials was
strongly represented in factor 2. Amikacin is a synthetic derivative of kanamycin so its
activity against bacteria is similar (Prescott et al., 2000). Consequently, it is not surprising
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to see the two behave similarly in a factor analysis. However, the relationship, or lack
thereof, between these two antimicrobials and the two that loaded heavily on this factor is
not well understood.

The antimicrobials in factor 6, in the same manner as factor 2, come from different
classes of antimicrobials. The grouping of antimicrobials in factor 6 parallels an important
combination of antimicrobial resistance found in Salmonella Typhimurium. An epidemic
strain of S. Typhimurium definitive type 104 has a penta-resistant combination to
ampicillin, chloramphenicol, streptomycin, sulphonomides and tetracyclines and a world-
wide distribution (Davis et al., 1999). The latter two antimicrobials did not load
substantially on factor 6 but loaded heavily on factor 2.

Six antimicrobials (amikacin, apramycin, ceftiofur, ceftriaxone, ciprofloxacin, and
gentamicin) did not contribute information to the antibiogram because all isolates were
susceptible. When the MIC values were used in the factor analysis, only amikacin was
not related substantially to any of the six factors. The categorization of MIC values into
susceptibility/resistance categories for creation of the antibiogram resulted in a loss of
information.

Many reports present only the dichotomy of susceptibility/resistance for each anti-
microbial on the panel that was tested in the study along with the breakpoint for designation
(Walker and Thornsberry, 1998). Solely reporting descriptive information univariably
on resistance/susceptibility has some disadvantages. First, the MIC breakpoints could
change—thereby limiting the value over time of studies, which dichotomized the data
(Walker and Thornsberry, 1998). Secondly, dichotomization reduces the amount of infor-
mation that is available for analysis and interpretation. Shifts in MIC values might become
apparent or be of interest before ““cutpoints” are crossed. Jones (2000) presents a case for
showing the MICs as cumulative distributions. Lastly, the biological processes underlying
resistance development and transmission lead to resistance/susceptibility linkages among
antimicrobials that are not easily identifiable when univariate summaries are presented.

The potential for violation of assumptions when using MIC data in factor analysis
should be assessed. The MIC data are not truly continuous data and might even be left or
right truncated. These characteristics—along with the potential for skewness in the
distributions—make it difficult to assume that the underlying distribution is normal.
The log transformation we used in this study removed only some of the skewness. These
deficiencies make the assumption of multivariate normality somewhat tenuous unless, with
the large-sample size in the current study, the multivariate version of the Central-Limit
Theorem is invoked (Morrison, 1976). The similarity of the factors obtained using the PC and
the ULS methods—neither of which depend on multivariate normality for factor extraction
(Johnson and Wichern, 1992; Harman and Jones, 1966)—with the factors obtained using the
ML method suggests that the ML method provided valid results even if the multivariate
normal assumption was violated. Similarly, the potential lack of independence due to
multiple isolates per sample did not adversely affect the factor analytic results (but, rather,
the increased number of isolates added stability to the factor extraction process).

Factor loadings using the ML method were similar for the transformed and non-
transformed data—implying the transformation did not substantially alter inherent patterns
in the data. Also, in situations where inferential analyses are not being conducted, it may
not be necessary to transform MIC data for use in any of the factor-analysis methods.
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5. Conclusions

Factor analysis provides insight into correlations, if they exist, among the MIC patterns
for the antimicrobials used in a panel. In this sense, the method can be applied to any panel
being used to explore patterns of resistance associated with any bacterial isolates. In
addition, when designing future antimicrobial testing studies, a cost-effective alternative
might be to consider accounting for the correlations in the data. Antimicrobial-resistance
testing is fairly expensive, especially when the number of isolates being tested is large. If
certain antimicrobials are strongly correlated, then it might be possible to omit some of the
antimicrobials from the panel without substantially reducing the amount of information
that is available. Also, as was the case in this study, if there is little variation in the MIC
values for a specific antimicrobial, it might not load substantially on any factor. If
identification of patterns is the study objective rather than detecting emerging resistance,
then it might be useful to omit antimicrobials with little variation in the MIC values from
the panel.
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